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ISDAC Motivation

• Most studies of cloud-aerosol interactions have focused on warm
clouds.

• Cloud-aerosol interactions are much more complex for ice or mixed-
phase clouds than for warm clouds.

• The Mixed-Phase Arctic Cloud Experiment at the ARM site at
Barrow in October 2004 has provided new insight into these
interactions.

• The arctic air during April is expected to be much more polluted than
the air during M-PACE.

• This contrast provides an opportunity to
– distinguish between aerosol effects on arctic clouds under clean and

polluted conditions
– improve understanding of the scavenging of arctic aerosol during spring
– identify the chemical signature of ice nuclei in the arctic



Why Study Scavenging in the Arctic?

• Most of the relative uncertainty in
simulated aerosol optical depth
and mass loading is in polar
regions.

• Most arctic aerosol comes from
midlatitude sources.

• The treatment of transport is
unlikely to cause a 10-fold
uncertainty.

• Such uncertainty is probably due
to the treatment of scavenging by
clouds.
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Kinne et al., An AeroCom initial assessment.
Atmos. Chem. & Phys., 2006.



Why Study Ice Nucleation in the Arctic?

• Anthropogenic changes in ice
nucleation may influence
aerosol burden and climate.

• The treatment of ice nucleation
in models affects the aerosol
scavenging efficiency.

• A variety of ice nucleation
mechanisms are involved.

• A counterflow virtual impactor
can be used to isolate ice
nuclei from the cloud particles
and then determine size and
composition.

• ASP could provide the first
Arctic measurements of ice
nuclei size and composition.

Lohmann, A glaciation indirect aerosol effect
caused by soot aerosols. GRL 2002.
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Key ARM Aircraft Measurements

cloud extinction coefficient, asymmetry parameterCIN

cloud particle image 15-2500 mmSPEC CPI

total condensed water concentrationDMT CSI

temperature, LWC, cloud particle size dist (0.5-1500 mm)DMT CAPS

updraft velocityGust probe

optical absorptionPSAP

IN concentrationCFDC

CCN concentration (one S)DMT CCN counter

Size-resolved aerosol hygroscopicity (0.015 - 0.6 mm)TDMA

aerosol size distribution (0.1-3 mm)PCASP

aerosol size distribution (0.01-0.75 mm)DMA

total particle concentration (> 3 nm)TSI 3025

MeasurementsInstrument



ASP Instruments and Measurements

Total aerosol numberTSI 3010, 3025A

Aerosol size distribution 0.1-3 μmPCASP

Aerosol size distribution 3-1000 nmScanning Mobility Particle Sizer

CCN spectrum

Aerosol absorptionDRI Photoacoustic

Single particle chemical composition
and mixing state

Time-Resolved Aerosol Collector /
CCSEM/EDX

Size-resolved compositionAerosol Mass Spectrometer
Particle ionic compositionParticle-in-Liquid System

DRI CCN Spectrometer

Cloud-borne aerosolCounterflow Virtual Impactor
MeasurementInstrument



Aerosol Scavenging
• Two conditions for wet

scavenging of aerosol:
– Attachment to hydrometeor
– Precipitation of hydrometeor

• Evaluate first condition by
comparing simulated and
observed partitioning of aerosol
between interstitial and cloud-
borne

• Evaluate second by comparing
simulated and observed
hydrometeor size distribution
and precipitation rate

Henning, Bojinski, Diehl, Ghan, Nyeki,
Weingartner, Wurzler,and
Baltensperger: Aerosol partitioning in
natural mixed-phase clouds. GRL
2004.



Deep Convective Clouds and Chemistry
June-July 2009 Colorado - Oklahoma
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• Deep convection plays important roles in vertical transport, aqueous-phase
sulfate production, nucleation, and scavenging of trace chemicals and
particulate matter.

• The representation of this influence in global climate models is highly
uncertain.

• Several ASP projects address this challenge.
• DOE does not have an aircraft that can sample detrainment of trace species

from deep convection.
• DC3 would provide upper tropospheric measurements that would

complement DOE measurements in the lower troposphere.



Pollutant Mass Closure (Don Lenschow)
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Key Platforms

• DC3 would provide
– NSF/NCAR G-V to sample the convective outflow of aerosol and

trace gases in the upper troposphere
– either the NASA DC-8 or the NSF/NCAR C-130 to sample the

inflow of aerosol and trace gases in the middle troposphere

• ASP would provide the G-1 to sample the inflow of
aerosol and trace gases in the lower troposphere



Key Measurements

Measurement DC-8 G-V G-1 

O3, CO, HNO3, SO2 1 1 1 

NO, NOy, NO2 1 1 1 

H2O vapor 1 1 1  

Peroxides  1 1 1  

CVI  2  

Aerosol size distribution 1 2 1 

CCN  1 2 1 

Size-resolved aerosol composition 

(AMS, PILS) 

1 2 1 

Time-Resolved Aerosol Collector  2  1 

Winds, T, p, location 1 1 1 

 
1: essential. 2. desirable


